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Summary
Five main factors play a pivotal role in
the pathogenesis of acne: androgen
dependence, follicular retention
hyperkeratosis, increased sebaceous
lipogenesis, increased colonization
with P. acnes, and inflammatory
events. This paper offers a solution for
the pathogenesis of acne and
explains all major pathogenic factors
at the genomic level by a relative defi-
ciency of the nuclear transcription
factor FoxO1. Nuclear FoxO1 sup-
presses androgen receptor, other
important nuclear receptors and key
genes of cell proliferation, lipid
biosynthesis and inflammatory
cytokines. Elevated growth factors
during puberty and persistent
growth factor signals due to Western
life style stimulate the export of
FoxO1 out of the nucleus into the
cytoplasm via activation of the phos-
phoinositide-3-kinase (PI3K)/Akt
pathway. By this mechanism, genes
and nuclear receptors involved in
acne are derepressed leading to
increased androgen receptor-mediat-
ed signal transduction, increased cell
proliferation of androgen-dependent
cells, induction of sebaceous lipogen-
esis and upregulation of Toll-like-
receptor-2-dependent inflammatory
cytokines. All known acne-inducing
factors exert their action by reduction
of nuclear FoxO1 levels. In contrast,
retinoids, antibiotics and dietary
intervention will increase the nuclear

Introduction
It is the purpose of this paper to demon-
strate that the nuclear transcription 
factor FoxO1, a member of the class O
subfamily of forkhead box (FoxO) tran-
scription factors, regulates the activity of
most important target genes involved in
the pathogenesis of acne, i. e., androgen
receptor (AR) transactivation, follicular
keratinocyte hyperproliferation, seba-
ceous lipogenesis and follicular inflam-
mation. FoxO1 is proposed to be the key
to understand the influence and link bet-
ween genetic and environmental factors
in acne. Upregulation of nuclear FoxO1
by retinoids might explain the beneficial
effects of increased nuclear FoxO1 in the
treatment of acne.

FoxO-transcription factors
Forkhead box O (FoxO) transcription
factors FoxO1, FoxO3a, FoxO4 and
FoxO6 are emerging as an important 
family of regulatory proteins that modu-
late the expression of important genes in-
volved in cell cycle control, DNA damage
repair, apoptosis, oxidative stress, cell dif-
ferentiation, glucose metabolism and
other cellular functions (Figure 1) [1].
The potent functions of FoxO proteins
are tightly controled by complex signaling
pathways under physiological conditions
[2]. Central to the regulation of FoxO
transcription factors is a shuttling system,
which confines FoxO factors to either the
nucleus or the cytosol (Figure 2).
Shuttling of FoxO1 requires protein
phosphorylation of nuclear FoxO1 by

content of FoxO1, thereby normaliz-
ing increased transcription of genes
involved in acne. Various receptor-
mediated growth factor signals are
integrated at the level of PI3K/Akt
activation which finally results in
nuclear FoxO1 deficiency.
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activated phosphoinositide-3-kinase
(PI3K) and Akt kinase. Activated 
Akt translocates into the nucleus for
FoxO phosphorylation. Phosphorylated
FoxO1 leaves the nucleus, thereby chan-
ging gene regulation. Dysregulation of
FoxO1 and its nuclear export by insulin,
insulin-like growth factor-1 (IGF-1) or
other growth factor-mediated activation
of PI3K/Akt affects the transcriptional
activity of key target genes and nuclear
receptors involved in acne pathogenesis.

It will be shown that upregulation of
nuclear FoxO1 concentration is the un-
derlying mechanism of retinoid treat-
ment, retinoid-induced downregulation
of AR transactivation as well as retinoid-
induced hypertriglyceridemia.

FoxO1 and androgen dependence 
of acne
The role of androgens in acne vulgaris
and the beneficial effect of anti-androgen
treatment of female acne patients are

well established. Androgen-mediated
signal transduction plays an essential role
for the stimulation of the size of se-
bocytes and sebum production as well as
keratinocyte proliferation in the ductus
seboglandularis and the infundibulum.
Androgen-signal transduction is media-
ted by nuclear ARs which are localized in
the basal layer of sebaceous glands, kera-
tinocytes and perifollicular fibroblasts.
Androgens induce the expression of ste-
rol regulatory element binding proteins
(SREBPs), the most important transcrip-
tion factors of lipogenesis [3]. Androgen-
insensitive subjects who lack functional
ARs do not produce sebum and do not
develop acne [4]. Increased AR protein
levels have been determined in skin of
acne patients [5]. Thus, sufficient evi-
dence supports the view that the AR sy-
stem plays a key role in the pathogenesis
of acne. 

FoxO1 and androgen receptor
AR is a modular protein organized into
functional domains, consisting of an N-
terminal transcription activation domain
(TAD), a DNA-binding domain, a small
hinge region and a C-terminal ligand-
binding domain for androgens [6, 7] 
(Figure 3). Testosterone and its more po-
tent metabolite, 5!-dihydrotestosterone
(DHT), bind AR and activate the expres-
sion of androgen-responsive target genes
at the transcriptional level. The TAD me-
diates the majority of AR transcriptional
activity and provides the most active co-
regulator interaction surface [8, 9].
FoxO1 is a transcription factor sensing
metabolic changes and is an important
metabolically regulated AR corepressor.
FoxO1 binds to the TAD of AR where it
disrupts p160 coactivator binding and
suppresses N-terminal/C-terminal-inter-
action of AR, which is most important
for AR transcriptional activity [10]. By
this mechanism, FoxO1 reduces the ex-
pression of AR target genes. The level of
AR transcriptional activity by endocrine
and nutritional factors is regulated by
FoxO1 phosphorylation. The AR repres-
sive function of FoxO1 is attenuated by
increased growth factor (insulin/IGF-1)
signaling with activation of the
PI3K/Akt cascade [11, 12]. Activated
Akt kinase translocates into the nucleus
and phosphorylates nuclear FoxO1,
which is extruded from the nucleus into
the cytosol, where FoxO1 is sequestered
by the cytoplasmic 14-3-3 proteins, 
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Figure 1: Regulatory functions of nuclear transcription factor FoxO1. FoxO1 directly inhibits nuclear
receptors like PPAR" or LXR. FoxO1 activates or represses the promoter of target genes.

Figure 2: Growth factors activate the PI3K/Akt pathway. Activated Akt phosphorylates (green hexa-
gons) nuclear FoxO1 which is exported from the nucleus into the cytosol and degraded. Growth fac-
tor signaling provides a switching mechanism for FoxO1 shuttling between the nucleus and cyto-
plasm. PI3K = phosphoinositide-3 kinase; Akt = Akt kinase.



ubiquitinylated and send to proteasomal
degradation [2]. Not only androgen bin-
ding but the availability and action of co-
activators and corepressors like FoxO1
dictate the final transcriptional response
of the AR regulatory system in specific
cells. The expression of several growth
factors like IGF-1 and regulatory pro-
teins of cell cycle control and lipogenesis
are dependent on androgen signal trans-
duction [13]. Thus, nuclear FoxO1 ex-
trusion and upregualtion of AR tran-
scriptional activity will augment the
expression of a substantial set of AR-res-
ponsive target genes resulting in further
increase in growth factor signaling.
Thus, FoxO1-mediated regulation of AR
modifies the gene expression of AR-ex-
pressing tissues like the sebaceous and
prostate gland.

FoxO1 and sebaceous lipogenesis 
Peroxisome proliferator-activated receptors
In vitro experiments with human se-
bocytes have shown that testosterone af-
fects cell proliferation in a dose-depen-
dent manner [14, 15] but not lipid
synthesis [16, 17]. This unexpected ob-
servation led to the assumption that co-
factors may be required for complete in-
duction of the full lipogenic program of
sebocytes [18]. Another type of nuclear
receptors, the peroxisome proliferator-
activated receptors (PPARs) and their 
ligands were confirmed to be the impor-

tant coregulators for sebaceous lipogene-
sis [16–19]. Three subtypes of PPARs,
PPAR!, PPAR#, and PPAR" are expres-
sed in follicular keratinocytes and 
sebocytes and are involved in the regula-
tion of lipogenesis and cell differentia-
tion [20]. Specific agonists of each PPAR
isoform stimulate sebocyte differentia-
tion [20]. Fatty acids of n-3- and n-6
origin and their cyclooxigenase and 5-li-
poxigenase products play an important
role as natural PPAR ligands that modu-
late PPAR function [21]. PPAR# ligand
linoleic acid is a most effective agonist in
stimulation of lipid formation in se-
bocytes and keratinocytes [20]. Inhibi-
tion of the formation of the PPAR! ago-
nist leukotriene B4 [22, 23] is the
rationale for the sebum suppressive treat-
ment of moderate acne with the 5-li-
poxygenase inhibitor Zileuton [24, 25].
However, the most important PPAR in
the regulation of lipid metabolism is
PPAR", whose natural ligand is prostag-
landin J2. PPAR" is essential for seba-
ceous gland development and function
[20]. Increased release of substance P
might mediate stress-induced effects on
the pilosebaceous follicle and upregula-
tes PPAR" protein expression and RNA
amplification in cultured sebocytes [26].
Furthermore, PPAR" plays a significant
role in mediating insulin sensitivity, glu-
cose and lipid homeostasis [27–29].
PPAR" is present in rat preputial se-

bocytes and cultured sebocytes [16, 30–
32] and like the other PPAR subtypes in-
creases human sebum production [33].
Isotretinoin (13-cis retinoic acid) signifi-
cantly decreased lipogenesis in SEB-1 se-
bocytes, whereas the PPAR" agonist ro-
siglitazone increased lipogenesis. This is
the reason why patients treated with
thiazolidinediones or fibrates had signifi-
cant increases in sebum production.
PPAR" like AR is transrepressed by
FoxO1. FoxO1 directly binds and re-
presses the PPAR"2 promoter as well as
PPAR" function [34, 35] (Figure 3).
Growth factor signaling reduces nuclear
FoxO1 concentrations via activation of
Akt, thereby augmenting PPAR" activity
required for terminal differentiation of
sebocytes. Insulin and other growth fac-
tors like IGF-1 induce FoxO1 phos-
phorylation and its nuclear exportation,
which prevents FoxO1-PPAR" interac-
tion and rescues transrepression of genes
involved in lipogenesis [36]. In fact, se-
rum levels of IGF-1 correlate with facial
sebum excretion [37]. PPAR" heterodi-
merizes with the retinoid X receptor
(RXR) and binds to PPAR response ele-
ments in promoters of target genes. One
mechanism by which FoxO1 antagonizes
PPAR" activity is through disruption of
DNA binding as FoxO1 inhibits the
DNA binding activity of the PPAR"/
RXR! heterodimeric complex [35].
PPAR"/RXR! heterodimers have re-
cently been detected in sebocytes [38].
Thus, growth factor signaling inhibits
the transrepressive effect of FoxO1 on
AR and PPAR"/RXR!, resulting in ter-
minal differentiation of sebocytes with
augmented lipogenesis.

Liver X receptors
Liver X receptors (LXRs) are further
members of the nuclear receptor superfa-
mily which play a critical role in chole-
sterol homeostasis and lipid metabolism
[39]. Expression of LXR! and LXR$
has been detected in SZ95 sebocytes
[40]. LXR ligands enhance the expres-
sion of LXR! and stimulate lipid synthe-
sis [40, 41]. LXRs directly control the ex-
pression of SREBP1 [39, 42–45]. A
LXRE motif is present in the PPAR"
promoter, on which LXR!/RXR! he-
terodimer is bound and activated by a
LXR ligand [46]. In the SZ95 sebocyte
cell line activation of LXR! induced li-
pid synthesis that was accompanied with
the induction of SREBP1 and PPARs
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Figure 3: FoxO1 is a corepressor of the transactivation domain of androgen receptor. FoxO1 suppress-
es the promoter of PPAR" and activates the promoter of glucose transporter protein-4 (GLUT4). 
AR = androgen receptor; AF-1 = activation factor 1; PPAR" = peroxisome proliferator-activated 
receptor-"; T = testosterone; DHT = dihydrotestosterone; DBD = DNA binding domain; LBD = 
ligand binding domain; ARE = androgen receptor response element.



[15, 41, 47]. In SEB-1 sebocytes, IGF-1
induced SREBP1 expression and increa-
sed lipogenesis via activation of the
PI3K/Akt signaling pathway [48, 49].
FoxO1 plays an important role in the re-
gulation of the SREBP1c promoter ac-
tivity. From studies of SREBP1c gene ex-
pression in skeletal muscle it is known
that SREBP1c expression is regulated by
a heterodimer of LXR! and RXR!. In
the fasting state, RXR" is markedly
decreased and restored by refeeding [50].
RXR" or RXR!, together with LXR!
activate the SREBP1c promoter [50].
The expression of FoxO1 negatively cor-
related with SREBP1c expression. Over-
expression of FoxO1 decreased gene ex-
pression of RXR" and SREBP1c and
suppressed LXR!/RXR!-mediated
SREBP1c promoter activity [50]. Thus,
nuclear FoxO1 has a fundamental im-
pact on the regulation and expression of
SREBP1c, the key transcription factor of
multiple lipogenic target genes. Growth
factor-mediated derepression of RXR"
and LXR!/RXR! heterodimers of the
SREBP1c promoter finally stimulate the
expression of SREPB1c and concomi-
tant lipogenesis.

FoxO1 and comedogenesis 
The formation of a microcomedo, the
first microscopic change in the evolution
of acne, results from increased prolifera-
tion and retention of infundibular kera-
tinocytes, which has convincingly been
demonstrated based on increased labe-
ling of the comedonal wall with tritiated
thymidine [51]. Hyperproliferation of
keratinocytes and hypercornification of
the follicular wall could be experimen-
tally induced by interleukin-1! (IL-1!)
and blocked by the addition of IL-1 re-
ceptor antagonist [52]. These observati-
ons underline the importance of IL-1!
in comedogenesis.
The recruitment of PI3K to activated re-
ceptor complexes is a common feature of
signal transduction of tyrosine kinase re-
ceptors. However, not only tyrosine
kinase receptors but also G protein-coup-
led receptors (GPCRs) like IL-1 receptor
are also able to activate the PI3K/Akt pa-
thway [53–55]. It is conceivable that IL-
1!-induced PI3K/Akt signaling is asso-
ciated with acne in IL-1!-hypersecreting
PAPA syndrome [56–58]. In fact, PAPA
syndrome responded well to anakinra, an
IL-1 receptor antagonist [59, 60]. Gro-
wth factor signaling during puberty ac-

tivates basal keratinocytes which release
IL-1! [61], a primary signal initiating
further suprabasal keratinocyte activation
resulting in the expression of cytokeratins
K6, K16 and K17 [62]. Indeed, upregu-
lated expression of these cytokeratins has
been detected in infundibular keratino-
cytes, the comedone wall, sebaceous duct
cells and differentiated sebaceous cells of
acne patients [63, 64].
The regulation of genes controling the
cell cycle is a major functional role of
FoxO proteins. In the absence of growth
factors, FoxOs reside in the nucleus and
upregulate genes that inhibit the cell cy-
cle (p27KIP1 and p21WAF1), promote
apoptosis (Fas ligand, Bim and TRAIL),
and decrease oxidative stress (superoxide
dismutase and catalase) [1]. Further-
more, a number of important genes con-
trolling cell cycle checkpoints (cyclins
D1 and D2) and matrix modulation
(matrix metalloproteinases) are repressed
by FoxOs [1, 65]. Intriguingly, increased
concentrations of matrix metallopro-
teinases have been observed in sebum of
acne patients. The derepression of FoxO-
controled genes involved in cell cycle
progression and matrix modulation by
growth factor signaling might explain
the increased cell proliferation of come-
dogenesis and increased levels of matrix
metalloproteinases observed in sebum of
acne patients [18, 51]. 

FoxO1 and insulin resistance 
of puberty
Increased pituitary secretion of growth
hormone (GH) is the major endocrine
change of puberty, a period of transient
insulin resistance. GH induces hepatic
synthesis and secretion of IGF-1, the
most important mediator of growth. The
GH/IGF system has been considered to
be the major contributor of insulin resi-
stance at puberty [66–72]. Insulin resi-
stance is associated with a marked reduc-
tion in the intracellular pool of glucose
transporter protein-4 (GLUT4) [73]. 
The expression of GLUT4 is regulated
by FoxO1, PPAR"1 and PPAR"2.
FoxO1 directly activates the GLUT4
promoter and suppresses the promoters
of PPAR"1 and PPAR"2 [73]. PPAR"1
and PPAR"2 repress the GLUT4 pro-
moter. In the absence of growth factors,
high nuclear levels of FoxO1 increase in-
sulin sensitivity by direct stimulation of
the GLUT4 promoter and suppression
of PPAR"1 and PPAR"2 expression.

However, during increased growth factor
signaling and decreased nuclear FoxO1,
direct FoxO1-activation of the GLUT4-
promoter is reduced and PPAR"-media-
ted repression of GLUT4 is increased re-
sulting in diminished expression of
GLUT4 leading to insulin resistance.
Thus, high levels of nuclear FoxO1 in-
duce directly and indirectly via PPAR"
the expression of GLUT4 and improve
insulin sensitivity and cellular glucose
uptake [73]. Rosiglitazone and pioglita-
zone, two synthetic hypoglycemic agents
of the thiazolidinedione family, are po-
tent ligands of PPAR". They alleviate
PPAR" repression of the GLUT4 pro-
moter, thereby enhancing insulin res-
ponsiveness with improved glucose
uptake [73, 74]. However, chronic insu-
lin/IGF-1-stimulation with increased
phosphorylation of FoxO1 results in in-
sulin resistance, an endocrine characteri-
stic observed at puberty and in polycystic
ovary syndrome (PCOS). Therefore, it is
not surprising that PCOS is often asso-
ciated with insulin resistance, acne and
hirsutism. These data underline the pi-
votal role of FoxO1 in glucose metabo-
lism and explain that the reduced
nuclear content of FoxO1 during increa-
sed growth factor signaling is the cause of
transient insulin resistance at puberty. 

FoxO1 and follicular inflammation
Toll-like-receptors
Toll-like receptor-2 (TLR2) and TLR4
expression was found to be increased in
the epidermis of acne lesions [75]. TLR2
is also expressed on the cell surface of
macrophages surrounding pilosebaceous
follicles. Propionibacterium acnes induce
cytokine production of monocytes
through a TLR2-dependent pathway
[76]. Distinct strains of P. acnes induced
selective human $-defensin-2 and IL-8
expression in human keratinocytes
through TLRs [77]. P. acnes, by acting on
TLR2, may stimulate the secretion of 
IL-6 and IL-8 by follicular keratinocytes
and IL-8 and IL-12 by macrophages, gi-
ving rise to inflammation [78]. There is
no doubt that TLRs play an important
role in the induction of innate immunity
and inflammatory cytokine responses in
acne [79].
Interestingly, TLR2 contains a PI3K bin-
ding motif and activation of PI3K is par-
ticularly important for TLR2 signaling
[80] (Figure 4). In response to bacterial
ligands, Src family kinases initiate
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TLR2-associated signaling, followed by
recruitment of PI3K and phospholipase
C" necessary for the downstream activa-
tion of pro-inflammatory gene transcrip-
tion [81–83]. Thus, PI3K is not only ac-
tivated by tyrosine kinase receptors, but
also by TLRs and cytokine receptors like
IL1-R [84]. A direct interaction between
PI3K and TLRs or their adaptor pro-
teins, such as MyD88, has been repor-
ted. Additionally, YxxM motifs in TLRs
and MyD88 are required for their inter-
action with the p85 regulatory subunit
of PI3K [80, 85, 86]. TLR2-mediated
activation of transcription factor NF%B
also requires YxxM motifs [80], sug-
gesting that recruitment of PI3K to the
cytosolic domain of TLR2 is important
for downstream signal transduction.
Furthermore, phosphorylation of Akt is
detected upon stimulation of most TLRs
[87].

Toll-like receptor-2 and lipogenesis
PI3K activation by growth factor signa-
ling of puberty and the decrease of
nuclear FoxO1 levels followed by dere-
pression of PPAR" and LXR! and indu-
ced expression of SREBP1c is associated
with increased lipogenesis. An increase
of lipid synthesis of the sebaceous follicle
provides a most favorable milieu for gro-
wth and biofilm formation of P. acnes. In
a vicious cycle, P. acnes might stimulate

TLR2 on sebocytes which further in-
crease PI3K-mediated sebaceous lipoge-
nesis. SZ95 sebocytes were found to con-
stitutively express TLR2 and TLR4
augmented by exposure to components
of Gram-positive (lipoteichonic acid)
and Gram-negative (lipopolysaccharide)
bacteria [88]. Most intriguingly, P. acnes
exposure has recently been shown to
augment lipogenesis in hamster seba-
ceous glands [90].
This observation implicates that TLR2-
mediated PI3K activation might not
only be involved in the stimulation of in-
flammatory responses to P. acnes but also
to P. acnes/TLR2-stimulated sebaceous
lipogenesis and comedogenesis. 

FoxO1, toll-like receptors and adaptive
immune response
TLR stimulation mimics the action of
IL-1! and promotes the production of
pro-inflammatory cytokines, prostaglan-
dins, leukotrienes and chemokines [76].
Selected IL-1 receptor associated kinases
(IRAK-1, 2, M and 4) are bifunctional.
They can be recruited either to the TLR
complex and thus mediate TLR signa-
ling. On the other side, they can asso-
ciate with adapter proteins involved in T-
and B-cell receptor-mediated signaling
pathways linking TLR/IRAK signaling
to innate as well as adaptive immune re-
sponses [89, 91, 92]. Growth factor-me-

diated signaling as well as TLR2-signal
transduction increases the activity of
PI3K/Akt, thus decreasing nuclear con-
tent of FoxO1. Therefore, it is conceiva-
ble that antibiotic treatment might
decrease P. acnes/TLR2-mediated upre-
gulation of sebaceous lipogenesis [90]. In
a synergistic fashion, ATRA has been
shown to downregulate TLR2 expression
and function [93]. TLR2/PI3K-signa-
ling appears to be the connecting ele-
ment between upregulated innate and
adaptive immune responses in acne. An-
tibiotic treatment of acne might reduce
peptidoglycan-mediated stimulation of
TLR2/PI3K/Akt signaling and increases
nuclear levels of FoxO1. 

FoxO1 and the therapeutic effect 
of retinoids
Isotretinoin is the most potent inhibitor
of sebum production, yet its mechanism
of action remains largely unknown [94–
96]. Oral isotretinoin is isomerized in
20–30 % to ATRA and reduces comedo-
gensis, sebogenesis and inflammation
[94–96]. Topical ATRA and other reti-
noid derivatives is the mainstay of anti-
comedogenic external acne therapy [97,
98]. There is substantial evidence that
isotretinoin interferes significantly with
the regulation of cell cycle control me-
chanisms. Isotretinoin causes a signifi-
cant dose- and time-dependent decrease
of viable SEB-1 sebocytes. Part of this
decrease could be attributed to cell cycle
arrest as evidenced by decreased DNA
synthesis, increased p21 protein expres-
sion and decreased cyclin D1 [99, 100].
The isotretinoin-induced apoptosis of
SEB-1 sebocytes was associated with in-
creased cleaved caspase 3 protein. The
ability of isotretinoin to induce apoptosis
could not be recapitulated by 9-cis RA or
ATRA. Isotretinoin-induced apoptosis
was not inhibited in the presence of a RA
receptor (RAR) pan-antagonist. These
data indicate that isotretinoin causes cell
cycle arrest and induces apoptosis in
SEB-1 sebocytes by a RAR-independent
unknown mechanism [99, 100]. Recent
studies concerning isotretinoin-induced
changes in gene expression focused on
the regulatory role of RAR and RXR
confirmed that isotretinoin induces
apoptosis [101].
There is accumulating evidence that reti-
noids alter the expression of FoxO tran-
scription factors. It could recently be
shown in neuroblastoma cells that ATRA
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Figure 4: Toll-like receptor-2 has a binding motif for PI3K. TLR2/PI3K/Akt activation might reduce
nuclear content of FoxO1 thereby activating lipogenesis, comedogenesis as well as inflammatory
cytokine synthesis. Antibiotic treatment would interfere with this signaling pathway. TLR2 = Toll-like
receptor-2; PI3K = phosphoinositol-3 kinase; IL-6 = interleukin 6.



induced the expression of FoxO3 [102].
FoxO3 is the strongest activator of the
FoxO1 promoter, thus increasing the
transcription of FoxO1 [65]. In ATRA-
treated neuroblastoma cells, the upregu-
lation of FoxO3 correlated with the ex-
pression of FoxO target genes p27, p130,
and MnSOD [102]. These data show
that ATRA activates genes associated
with cell cycle arrest comparable to the
changes observed in isotretinoin-treated
SEB-1 sebocytes [99]. Retinoid-induced
expression of FoxO3 augments the ex-
pression of FoxO1 as well as FoxO1-de-
pendent target genes, like upregulation
of p21WAF1 and p27KIP1 and downre-
gulation of cyclins D1 and D2.
There is more indirect evidence suppor-
ting the role of isotretinoin for upregula-
tion of FoxO1, which is a corepressor of
the TAD of AR [10].
An isotretinoin-induced upregulation of
FoxO1 would suppress the activity and
expression of AR protein. In fact, reduced
levels of AR protein have been observed in
skin of acne patients after oral isotretinoin
treatment: a 2.6-fold decrease in AR bin-
ding capacity constant and a 4-fold reduc-
tion in AR protein expression [103].
Retinoids at pharmacological doses in-
crease plasma triglycerides and induce
overt hypertriglyceridemia in more than
20 % of the patients [104–106]. Hepatic
very low density lipoprotein (VLDL) pro-
duction is facilitated by microsomal trigly-
ceride transfer protein (MTP) in a rate-
limiting step that is regulated by insulin.
FoxO1 plays a key role in hepatic insulin
signaling. In HepG2 cells, MTP expres-
sion was induced by FoxO1 and inhibited
by exposure to insulin. This effect correla-
ted with the ability of FoxO1 to bind and
stimulate MTP promoter activity. Mice
that expressed a constitutively active
FoxO1 transgene revealed enhanced
MTP expression, augmented VLDL pro-
duction and elevated plasma triglyceride
levels [107]. These data suggest that
FoxO1 mediates insulin regulation of
MTP expression and augmented MTP le-
vels appear to be a causative factor for
VLDL overproduction and hypertriglyce-
ridemia [107]. Hepatic VLDL produc-
tion is suppressed in response to increased
insulin release after meals. Thus, insulin
acts via PI3K/Akt activation and reduces
nuclear levels of FoxO1 [108].
There is a second mechanism of reti-
noid-induced hypertriglyceridemia un-
derlining the regulatory role of FoxO1.

Retinoids increase the expression of apo-
lipoprotein C-III, an antagonist of plasma
triglyceride catabolism as apo C-III fun-
ctions as an inhibitor of lipoprotein li-
pase and hepatic lipase [109–111]. Iso-
tretinoin treatment in men (80 mg/d;
5 d) resulted in elevated plasma levels of
apo C-III [112]. In HepG2 cells, reti-
noids increased apo C-III mRNA and
apo C-III-protein production. Recent
evidence links apo C-III expression to
FoxO1 regulation, as FoxO1 stimulated
hepatic apo C-III expression and correla-
ted with the ability of FoxO1 to bind to
the apo C-III promoter. Deletion or mu-
tation of the FoxO1 binding site abolis-
hed insulin response and FoxO1-media-
ted stimulation [113].Thus, elevated
FoxO1 production in liver augmented
hepatic apo C-III expression [113].
From these data it can be deduced that
isotretinoin or its isomerized derivatives
induce the expression of FoxO1 in hepa-
tocytes explaining retinoid-induced hy-
pertriglyceridemia. Accumulated evi-
dence supports the view that retinoids
exert their beneficial therapeutic effects
in acne by upregulation of nuclear
FoxO1 thereby down-regulating increa-
sed AR-mediated signal transduction,
down-regulating infundibular keratino-
cyte hyperproliferation (comedogenesis),
suppressing increased sebaceous lipoge-
nesis and reducing increased TLR2 sig-
naling (inflammation), the major patho-
genic events in acne.

Conclusion and perspectives
All major steps in the pathogenesis of
acne, i. e., increased AR-mediated signa-
ling, cell proliferation of androgen-
dependent infundibular keratinocytes,
increased AR- and PPAR"-dependent
sebaceous lipogenesis, upregulation of
TLR2 signaling with local activation 
of the innate and adaptive immune res-
ponses, insulin resistance of puberty, the
therapeutic effect of retinoids, retinoid-
induced hypertriglyceridemia, the effec-
tiveness of retinoids and antibiotics via
reduction of TLR2-stimulation are all
integrated at the activity level of
PI3K/Akt, which finally determines the
activity and localization of the nuclear
transcription factor FoxO1.
Thus, all growth factors or acneigenic
stimuli mimicking growth factor signa-
ling might have a common denominator,
the reduction of the nuclear content of
FoxO1. Growth factor-mediated release

of FoxO1 from “acne target genes” and
nuclear receptors, especially AR, might
be the fundamental mechanisms in acne
pathogenesis. All measures, which ele-
vate the nuclear content of FoxO1, espe-
cially retinoid treatment, reduction of
P. acnes-mediated TLR2 stimulation by
antibiotics, dietary intervention with re-
duction of insulinotropic food will most
likely have beneficial counterregulatory
effects on acne.
Remarkably, the proposed growth factor-
PI3K/Akt-FoxO1 acne pathway is the
well-known oncogenic pathway, which
might explain the epidemiologic associa-
tion between long-lasting acne and
prostate carcinoma [114]. Chronically
upregulated PI3K/Akt might explain the
increased incidence of cancer in patients
with acne-associated diseases like acrome-
galy [115], PCOS [116, 117], Apert syn-
drome [118–120] and dioxin intoxica-
tion. In this regard, persistent acne in
adulthood should be recognized as an im-
portant clinical indicator of dysbalanced
growth factor signaling with insufficient
levels of nuclear FoxO1, an unfavorable
condition which increases mitogenic sti-
mulation and cell survival but reduces
apoptosis, well-recognized processes in
cancer promotion [121, 122].
Acne, certainly a disease with a genetic
background, is among other factors indu-
ced by environmental growth factors in
industrialized countries due to growth
factor-mediated imbalances of the key
transcription factor FoxO1. Acne patho-
genesis is linked to multiple systemic and
environmental risk factors demonstrating
that acne is not just a simple skin disease.
The presented concept of a nuclear
FoxO1 deficiency explains and links for
the first time major pathogenic factors
of acne at the genomic level. These insi-
ghts could improve our understanding
of retinoid action in dermatology and
may provide novel therapeutic strategies
in the treatment of acne and other hy-
perproliferative skin disorders based on
upregulation of nuclear levels of
FoxO1. <<<
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