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   Perspective

Targeting the skin to protect against infectious 
diseases has been practiced for many centuries. 
The first well-documented application dates 
from the 16th Century when variola virus, the 
causative agent of smallpox, was punctured into 
the skin to protect against later exposure to the 
virus [1]. The term ‘vaccination’ was coined as a 
result of Edward Jenner’s demonstration in 1796 
that cutaneous administration of the related, but 
much safer, vaccinia virus could also protect 
against smallpox [1]. Over the intervening centu-
ries, a number of vaccines have been administered 
to the skin using a variety of instruments, rang-
ing from crude to sophisticated [2]. Furthermore, 
advances in the field of immunology have led to 
an increased understanding of the basic mecha-
nisms of innate and adaptive immunity and have 
identified the skin as an attractive site for vacci-
nation, largely due to the presence of a dense net-
work of immune-stimulatory antigen-presenting 
cells and lymphatic drainage networks  [3–6]. 
This article reviews the results of published 
clinical vaccine trials in which the intradermal 
route has been investigated and provides a future 

outlook based on the coming availability of new 
delivery systems specifically designed for vaccine 
administration to the skin. Specific emphasis is 
placed on the potential of cutaneous delivery to 
overcome current limitations in vaccine potency 
in certain higher-risk subject populations, such 
as the elderly, the immunocompromised and 
cancer patients.

Classical intradermal delivery
The route of delivery for most vaccines is intra-
muscular. This is due more to the widespread 
availability of long needles and syringes that eas-
ily access the muscle tissue than to any compel-
ling scientific or medical evidence to suggest that 
the muscle is an ideal tissue from an immunologic 
point of view. Although the skin is now known 
to be a potent immune-stimulatory tissue, it has 
not been exploited to its full extent for vaccina-
tion due to the lack of readily available delivery 
systems to easily and reproducibly target the tis-
sue. The most widely used method of cutaneous 
delivery to date employs conventional needles 
and syringes according to a technique invented 
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by Mendel and Mantoux in the early 1900s [2]. This method, 
now referred to as the ‘Mantoux technique,’ is accomplished by 
inserting a 26- or 27-gauge (Ga) needle into the skin at a slight 
angle with the bevel pointed upwards. The needle is pushed into 
the dermis until the bevel is completely covered, after which the 
fluid, typically 100–200 µl, is slowly and carefully injected, result-
ing in a raised wheal on the skin surface (Figure 1). This technique 
requires extensive training and practice and must be performed 
by medical personnel. Furthermore, it is very difficult to control 
the injection depth using the Mantoux technique because it is 
determined by the angle of needle insertion, which varies with the 
user. Insertion of the needle too deeply may result in vaccine being 
administered into the less immunologically responsive subcutane-
ous tissue, while needles that are not inserted deeply enough can 
result in leakage of the fluid onto the skin surface either during 
or after the injection. Despite these difficulties, the Mantoux 
technique has been used in clinical trials investigating the intra-
dermal route for at least 12 different vaccines. The most recently 
widely studied of these include hepatitis B (HepB), influenza and 
therapeutic cancer vaccines, which will be reviewed below.

Hepatitis B vaccine
Intradermal delivery of HepB vaccine has been investigated in 
numerous subject populations, including healthy infants, children 
and young adults [7–20], as well as in high-risk populations, such 
as patients undergoing dialysis due to chronic kidney disease or 
transplantation [21–33].

Healthy young adult healthcare workers who had previously 
failed to respond to the intramuscular dosing regimen have been 
shown, in several cases, to generate protective levels of antibody 
following immunization by the Mantoux method [15–17]. In other 
comparisons between intramuscular and intradermal routes in 
healthy volunteers, it has been suggested that Mantoux-style 
intradermal delivery can enable dose-sparing by inducing anti-
HepB antibody responses using as little as a sixth of the dose 
typically used in conjunction with the conventional intramuscu-
lar route [9–11,19]. Conclusions from these studies must be made 
with caution, however, since low doses of vaccine administered 
by the intradermal route were not tested by conventional intra
muscular injection. Nonetheless, dose-sparing benefits from intra-
dermal delivery have been proposed as a means of reducing costs 
associated with HepB vaccination, particularly in the develop-
ing world where resources are limited, and in mass-vaccination 
settings [9,11,12,14,34].

The ability of intradermal delivery to induce more potent 
immune responses than intramuscular injection and the possi-
bility of dose-sparing for HepB vaccine are particularly important 
for hemodialysis patients, of whom only approximately 50–60% 
respond to the standard intramuscular regimen [28,30]. In this 
regard, administration of HepB vaccine by the Mantoux method 
has been shown to be immunogenic in dialysis patients who 
were previously unresponsive by the intramuscular route [25,31,33]. 
Various dosing regimens have been examined over the years. In 
many cases, an accelerated intradermal dosing schedule consisting 
of weekly or biweekly administrations of a low dose (e.g., 2–10 µg) 

of vaccine over several months has been shown to induce similar or 
greater responses compared with a standard intramuscular dosing 
regimen consisting of three to four administrations of a high dose 
of vaccine (e.g., 20–40 µg) over a 6-month period [22,23,27–29,31,32]. 
Intradermal-induced serum antibody has been shown to persist 
in dialysis patients for as long as 3–5 years after dosing [26,30], 
while the level of long-term response in comparison with intra-
muscular may vary depending on the particular dosing regimen 
employed [23,26,30,32]. In a head-to-head comparison, Propst et al. 
showed that antibody responses following administration of 
20 µg of vaccine by the intradermal route persisted at higher lev-
els than those induced by the same dose of vaccine administered 
by subcutaneous or intramuscular routes for at least 3 years [30]. 
However, other studies using lower doses of HepB vaccine admin-
istered by the Mantoux method showed a waning response over 
time  [20,23,26,32]. Additional dose-optimization studies will be 
required in order to further resolve the potential effects of anti-
gen dose and dosing frequency on both primary and memory 
responses for intradermal compared with conventional routes of 
delivery. In addition, the field would benefit from more direct 
head-to-head comparisons between intradermal and intramuscu-
lar in which the same doses of vaccine and dosing regimens were 
employed between routes. Nonetheless, the prevailing evidence to 
date suggests that cutaneous delivery of HepB vaccine can provide 
benefits over conventional routes of administration. These benefits 
are likely to be better defined and exploited through the use of 

Figure 1. The classical Mantoux technique for 
intradermal administration.
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new cutaneous delivery systems that are able to target the skin in 
a more reproducible manner than the current Mantoux method, 
as discussed later.

Influenza vaccine
Influenza infections are a major cause of morbidity and mortal-
ity worldwide; nevertheless, influenza vaccination remains greatly 
underutilized, even in developed countries, despite being a fully 
proven, cost-effective intervention against annual influenza infec-
tion [35]. Therefore, there is a need to establish more effective 
immunization protocols, including exploring new vaccine delivery 
systems that can contribute to improving prevention of influenza 
infection. Three major challenges remain to be solved with existing 
influenza vaccines:

Improving postimmunization immune response in elderly and •	
fragile subjects

Increasing compliance of children and adults to the annual •	
vaccination program

Increasing vaccine dose availability to reduce the risk of influenza •	
vaccine shortages

The currently recommended delivery route for inactivated tri
valent influenza vaccine is intramuscular, but this delivery method 
has not adequately addressed the unresolved issues presented pre-
viously. Intranasal administration of live-attenuated vaccine has 
been approved recently, but the impact this new delivery route has 
in addressing the three concerns remains to be established [36]. 

Intradermal delivery of influenza vaccine has been investigated 
intermittently for over 30 years. In all of these studies, the Mantoux 
method was employed. In 1977, Brooks et al. reported that intra-
dermal delivery of a reduced dose of vaccine compared with the 
standard regimen induced a fourfold or greater rise in antibody 
response, although the extent of response varied according to virus 
antigen [37]. In the same year, Brown et al. published the results 
of a clinical trial comparing 0.1 ml of vaccine administered by 
the Mantoux method with 0.5 ml delivered intramuscularly in 
naive subjects (without previous exposure to influenza antigens) 
and in subjects primed by a previous influenza infection. The 
results showed stronger antibody responses by the intramuscular 
route in naive subjects and equivalent responses for intramuscular 
versus intradermal routes in primed subjects [38]. In 1979, Herbert 
et al. and Halperin et al. conducted similar trials and concluded 
that intradermal injection promoted at least equivalent immune 
responses as compared with subcutaneous injection, with varia-
tions according to the antigen strain and the pre-existing immune 
status against influenza hemagglutinin antigens [39,40]. Among the 
confounding factors leading to mixed clinical study results with 
trivalent influenza vaccine is the effect of priming by previous 
natural infection. 

In clinical studies published in 2004, it was shown that a 
reduced dose of influenza vaccine administered to healthy young 
adults by the intradermal route produced equivalent responses 
to a higher dose administered intramuscularly [41,42]. In a similar 
study conducted in 2006, delivery of a low dose of vaccine by the 

Mantoux method was shown to induce weaker responses than 
the full dose administered intramuscular, although the response 
levels were still greater than the minimum levels required to 
achieve licensure in Europe [43]. Chiu et al. conducted a similar 
study in young children and reached similar conclusions as the 
above studies conducted in healthy young adults [44]. All of these 
studies, however, lacked the appropriate low-dose intramuscu-
lar controls required to make clear head-to-head comparisons 
between the two routes of administration. Recently, Belshe et al. 
conducted such a comparison in healthy young adults and showed 
that a low dose of vaccine administered intramuscular was just 
as effective as a low dose delivered by the Mantoux method [45]. 
Thus, the potential for the Mantoux-style intradermal injections 
to enable dose sparing and improved immune responses for influ-
enza vaccine remains a subject of debate that perhaps can be bet-
ter resolved through the use of new delivery systems that more 
reproducibly and effectively deliver to the skin. Recent studies 
using one such delivery system (described in greater detail below) 
suggest that controlled intradermal delivery can induce humoral 
immune responses in elderly subjects that are superior to responses 
achieved by conventional intramuscular injection when the same 
dose is administered by both routes [46,47]. Additional studies with 
this new delivery system and others are eagerly anticipated and 
will contribute to a greater understanding of the role of delivery 
route on influenza vaccine potency.

Therapeutic cancer vaccines
Intradermal delivery by the Mantoux method has been widely 
studied in the field of therapeutic cancer vaccines. Clinical tri-
als of the intradermal route have been conducted for a wealth 
of indications, to varying degrees of success. These include 
melanoma [48–57], non-small cell lung cancer [58–60], hepatocellular 
carcinoma [61,62], pancreatic cancer [63,64], brain cancer [65], renal 
cell carcinoma [66–71], breast cancer [72–75], ovarian cancer [72,75,76], 
prostate cancer [69,77–83], non-Hodgkins lymphoma [84] and B-cell 
lymphoma [85]. However, most of these studies did not compare 
intradermal delivery with alternate routes of administration, thus 
making it difficult to ascertain the potential benefits associated 
with delivery to the skin. Nonetheless, the overwhelming major-
ity of studies demonstrated an acceptable safety profile regardless 
of the class of vaccine administered. These include anti-idiotype 
antibodies [48,76,86], peptides [51,58,62–64,72,75,82,87], proteins [84], 
autologous tumor cells [49,50,60,67,70,80], DNA [81] and dendritic 
cells [54,57,61,66,68,69,71,78,83,88]. In some cases, Mantoux-based injec-
tion was combined with other routes, such as intravenous [65], 
subcutaneous [52,55,56,59,74,86,89] or intranodal [55].

A small number of clinical studies have directly compared the 
Mantoux method with other routes of administration for cancer 
vaccines [53,77,79,90]. Fong et al. reported that IFN-g producing 
T-cell responses were evident in patients with metastatic pros-
tate cancer immunized by the intradermal and intralymphatic 
routes, but not following intravenous administration [77]. By 
contrast, more patients generated antibody responses when 
immunized by the intravenous route compared with intradermal 
and intralymphatic routes. These results suggested that the type 
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of immune response can vary depending on the route of admin-
istration. In most cases, cell-mediated immunity will be critical 
to the success of therapeutic cancer vaccines, so delivery meth-
ods that induce strong cell-mediated immunity will probably be 
preferred. Using autologous dendritic cells pulsed with tumor 
RNA, Kyte et al. showed an increased frequency of patients 
generating tumor specific T-cell responses following Mantoux-
style intradermal injections compared with nodal delivery in 
both melanoma and prostate cancer patients [53,79]. Using radio
labeled dendritic cells, Morse et al. showed evidence of cells 
migrating to the draining lymph nodes (where the adaptive 
immune response is initiated) in subjects treated by the intra-
dermal route, but not following administration by intravenous 
or subcutaneous routes [90]. Evidence of dendritic cell migration 
to lymph nodes following intradermal administration has also 
been shown in other imaging studies [57]. Some investigators 
have sought to exploit the benefits of accessing the lymphatic 
drainage networks in the skin for cancer vaccines. Vieweg and 
colleagues showed that immature 
dendritic cells migrate to draining 
lymph nodes with  efficiency similar 
to, or greater than, that of mature 
cells when administered to skin 
sites that had been pretreated with 
adjuvants, such as imiquimod or 
polyarginine [88]. Based on the large 
number of clinical trials evaluating 
the Mantoux method for therapeu-
tic cancer vaccines, it is likely that 
this area of investigation will benefit 
greatly from the introduction of new 
skin delivery systems that are easier 
to use and more effective.

Expert commentary & 
five‑year view
The vaccine delivery technology 
landscape is highly competitive and 
has been evolving rapidly over the 
past decade. The technology research 
environment involves numerous 
startup companies, major players 
in the medical device industry and 
the major vaccine manufacturers. 
Recent progress in skin immunology 
and a better understanding of the 
physiology of the adaptive immune 
response is fueling creativity and 
rapid evolution in vaccine delivery 
technologies. However, this innova-
tion,  is hampered by two challeng-
ing bottlenecks. The first bottleneck 
for start‑up companies and medical 
device manufacturers is the need to 
form a research and development 

alliance with vaccine manufacturers to evaluate efficiency and 
safety of new delivery systems in full compliance with good man-
ufacturing practice (GMP), good laboratory practice (GLP) and 
good clinical practice (GCP) without losing freedom to operate 
with any potential partners. The second bottleneck is the regula-
tory path for a combined vaccine-delivery system and formulated 
antigens, which can make it difficult for startup companies and 
even established medical-device manufacturers to proceed alone 
at an acceptable project risk level. In addition to these practical 
matters, the field has been hampered to date by a limited under-
standing of the cellular and molecular immunological mecha-
nisms associated with vaccine administration using the various 
delivery systems under development. A background in business 
and product development strategy as well as a solid scientific basis 
will be critical to addressing the technology challenges in vaccine 
delivery in the future. Table 1 summarizes many of the cutaneous 
vaccine delivery technologies being researched and developed by 
commercial entities. 

Table 1. Selected cutaneous vaccine delivery technologies under 
commercial development.

Technology Vaccine 
loading

Companies Products

Hollow microneedles

Microneedle affixed to 
specialized syringe

Prefilled Becton 
Dickinson

BD Soluvia™

Detachable microneedle 
for syringe

Nonprefilled Becton 
Dickinson

BD micro injection needle

Detachable microneedle arrays 
for syringe

Nonprefilled Debiotech Nanoject

Nonprefilled Nanopass MicroPyramid 
MicronJet needle

Nonprefilled Valeritas Micro-Trans™

Solid microneedles

Coated microneedle array Prefilled Zosano Transdermal microprojection 
delivery system

Coated microneedle array or 
pretreatment for patch

Prefilled or 
nonprefilled

3M Microstructured 
transdermal system

Valeritas Micro-Trans

Dissolvable microneedle 
vaccine array

Prefilled TheraJect VaxMAT

Transcutaneous

Needle-free patch on 
abraded skin

Prefilled Iomai/
Intercell

Transcutaneous 
immunization patch

Jet injection

Needle-free delivery of liquid jet Nonprefilled Bioject Biojector® 2000

Nonprefilled PharmaJet PharmaJet system

Prefilled Valeritas Mini-Ject™

Powder injection

Needle-free ballistic delivery Prefilled Pfizer/
Powder Med

PMED™ device
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To achieve public-health goals, vaccine-delivery systems must 
allow efficient and consistent delivery to the targeted body site 
without compromising the stability of vaccine antigens and 
adjuvants during storage and shipment and without negatively 
influencing subject acceptance. The market launch of the nasal, 
live-inactivated influenza vaccine in the USA for children and 
adults (FluMist™, MedImmune) with clinically proven efficacy 
and safety on a large population size gives hope that nasal deliv-
ery might be a viable alternative delivery method for influenza 
vaccination [91]. The unexpected adverse events (Bell’s palsy 
syndrome) with another nasal influenza vaccine in Europe after 
market launch in 2001 (NasaFlu™, Berna Biotech), however, 
pointed out that the safety of the nasal route needs to be rigor-
ously investigated, especially when adjuvants are included in the 
formulation [92].

Transdermal and transcutaneous delivery are other options for 
needle-free vaccine administration via the dermis and epidermis, 
respectively. Although the skin in its natural baseline condition 
is not permeable to large proteins and viral particles, it has been 
shown that if the outermost layer of the epidermis (the stratum 
corneum) is disrupted, large molecules and particles can reach 
the deeper epidermis where Langerhans’ cells are present [93,94]. 
Needle-free technologies for disrupting the epidermal skin barrier 
are numerous and can be classified broadly as biological/chemical 
approaches that employ nanoparticles, liposomes or other carriers 
to transport large molecules across the stratum corneum [6,95–97] 
or physical/mechanical approaches such as abrasion [98–102], skin 
pretreatment with ‘solid microneedles’ [103,104], sonoporation [105] 
and laser ablation [106–109]. Many of these technologies are at a 
relatively early stage of development for vaccine delivery, but have 
shown progress in early preclinical models. One technology that 
has shown considerable progress in the clinic is transcutaneous 
immunization (TCI). This approach combines vaccine antigens 
with heat-labile enterotoxins from Escherichia coli as an adjuvant 
that is applied in a patch to the epidermis of skin pretreated by 
mechanical disruption of the stratum corneum [93,98,110]. TCI 
has recently been used to immunize travelers against diarrhea 
caused by enterotoxigenic E. coli in a Phase II clinical trial [110]. 
Advantages of this technology are that it is needle free and sim-
ple to administer. However, some uncertainty remains regarding 
how broadly applicable TCI may be, as well as how the approach 
compares with standard injection-based delivery, especially with 
regard to dosing efficiency. Others have shown that live-attenuated 
measles vaccine applied topically to disrupted stratum corneum 
without adjuvant induced T-cell responses to a similar extent as 
subcutaneous injection, but failed to induce measles-neutralizing 
antibodies [111].

Other needle-free alternatives include liquid jet injection [112] and 
epidermal powder immunization [113,114]. Both of these approaches 
use high pressure to blast the liquid or powder through the stratum 
corneum and into the body. Epidermal powder immunization was 
specifically designed to deliver vaccines to the skin, while jet injec-
tion has classically been used for subcutaneous or intramuscular 
delivery, although some jet injectors are also intended for intra-
dermal delivery [2,112]. One challenge associated with the powder 

delivery approach is the need to reformulate the vaccine into dry 
powder form and to fill the powder into the device. Liquid jet 
injectors, on the other hand, are compatible with conventional vac-
cine formulations intended for injection by needle and syringe. By 
concept, liquid jet injectors are combination products associating a 
vial or cartridge with the vaccine and the jet injector as a medical 
device. One advantage of multiuse jet injectors is the ability to 
immunize many people very rapidly. Devices designed to inject 
several subjects using the same jet nozzle, however, were removed 
from the market due to inter-individual bloodborne contamina-
tion [115]. These concerns led to the development of safer jet injec-
tors that use disposable cartridges. Although not strictly intended 
for cutaneous delivery, jet injection has been demonstrated to be 
applicable to a wide range of vaccine types, such as inactivated 
viruses, polysaccharide–protein conjugates, toxoids, naked DNA 
and whole-cell vaccines [2,112]. In contrast to needle-based injec-
tion, however, jet injection often results in wide distribution of 
the injected fluid that, in some cases, can extend from the skin 
epidermis to as deep as the muscle, depending on the kinetics 
of the fluid jet injection and the penetration force. One concern 
related to jet-injector systems that are not prefilled is the need to 
manipulate the vaccine solution by transferring vaccine dose from 
a single or multidose vial to the jet injector cartridge at the time of 
use, which can potentially lead to vaccine dose wastage, contami-
nation and dosing error. Nonetheless, new prefilled jet injectors 
designed specifically for cutaneous delivery represent a promising 
future technology platform for vaccination via the skin.

Another approach for cutaneous delivery has been to continue 
to use needles, but dramatically reduce the size of such needles so 
that they are barely perceptible to the subject and are capable of 
delivering vaccines accurately and reproducibly to the epidermal 
and dermal tissue. Three approaches have been investigated; the 
first involves ‘solid microneedles’ that are coated with the vaccine 
in the form of a powder or film [116,117]. The coated microneedles 
are inserted into the skin and then removed, thus depositing their 
payload into the skin at a depth determined by the length of the 
microneedle. This approach has shown some promise in preclini-
cal studies; however, the dosing efficiency is typically low rela-
tive to conventional needle-based injection. As such, it is often 
necessary to coat the microneedles with a large excess of antigen, 
which could be problematic in situations in which vaccine supply 
is limited. In addition, this approach requires reformulation of 
the vaccine and the development of new manufacturing proc-
esses to coat the vaccine powders or films onto the surface of the 
microneedles or tines. In order to overcome some of these issues, 
a second approach involves the use of solid microneedles that 
consist of a dissolvable material into which the vaccine antigen has 
been incorporated [116,118–120]. This approach is at a much earlier 
stage of development than the approaches described previously 
and has many challenges remaining before it can be implemented 
at a commercial scale. Nonetheless, continued development of 
these types of delivery systems could one day offer a promising 
alternative to needle-based injections for cutaneous immuniza-
tion. The third approach in this category involves microneedles 
through which fluids are injected [100,102,104,121–123]. These devices 
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are intended to overcome the deficiencies of the Mantoux method 
by more accurately and reproducibly targeting the dermis. This is 
accomplished by inserting the microneedles perpendicularly to the 
skin surface, such that the injection depth is controlled precisely 
by the length of the microneedle. One potential disadvantage of 
this approach is that it still involves the use of sharp needles, albeit 
the needles are very small and, in many cases, barely perceptible 
to the subject. Nonetheless, the delivery devices associated with 
the microneedles will ideally be engineered with safety features to 
avoid accidental needle stick after use and to prevent reuse. Given 
the small size of the microneedle, it will also be challenging to 
develop delivery systems that enable fluid injection through the 
microneedle without leakage and that can be paired with existing 
vaccine manufacturing and filling processes.

A hollow microneedle-based injection system in advanced clini-
cal development is shown in Figure 2. This device (BD Soluvia™, 
Becton Dickinson) employs a microneedle that penetrates 1.5 mm 
into the skin to deliver vaccine to the dermis. Although the micro-
needle on this system is longer than that found on other devices 
at earlier stages of development, clinical studies have shown that 
the injection depth is appropriate for intradermal delivery across 
multiple body sites and in subjects of varying age, gender, body 
characteristics and ethnicities [124]. The system is prefilled with 
a preadjusted vaccine dose and is engineered with safety features 
to reduce the risk of accidental needle stick after use and prevent 
reuse. Clinical studies show that the device is intuitive to use, 
even without any previous training of the healthcare worker [121]. 
In elderly volunteers, administration of trivalent inactivated 
influenza vaccine (Sanofi Pasteur) using this device resulted in 
superior immune responses for all three strains compared with 
responses elicited by the conventional intramuscular delivery 
route [46,47]. The incorporation of microneedle technology into 
prefilled syringes overcomes many of the logistical burdens of 
immunization because the vaccine–device combination does not 
need to be filled at time of use. In addition, vaccine wastage 
is greatly reduced by switching from vials to prefilled syringes 
because syringes require much less overfill volumes and are not 
prone to dosing errors associated with filling the syringe by end 

users. In addition, the device employs a glass syringe on the inte-
rior of the device that can be filled on existing filling lines by 
vaccine manufacturers and contract fillers. Devices incorporat-
ing stainless steel microneedles of this sort have been used in 
numerous preclinical studies for influenza, anthrax and Japanese 
encephalitis vaccines [100,102,122,123]. The continued clinical and 
commercial development of this device and others similar to it are 
likely to have a major positive impact on cutaneous vaccination 
in the future.

In summary, we believe that the 5-year outlook for new skin-
targeting vaccine delivery systems is bright. Innovation in alterna-
tive vaccine delivery is being driven by emerging vaccine delivery 
systems combined with new and existing vaccines to address the 
specific needs of reducing logistical burdens of vaccination cam-
paigns, ensuring high quality and stability of vaccines with at least 
equivalent efficacy relative to standard methods in a manner that 
does not increase health risk exposure and that corresponds to the 
industrial manufacturing constraints required for GMP products. 
Furthermore, vaccine delivery to the skin has been shown, in 
many cases, to be a particularly effective method of inducing 
immune responses in high-risk populations such as the elderly, the 
immunocompromised and cancer patients. Increasingly, develop-
ment of the delivery device is being integrated early in the vac-
cine clinical development pathway to optimize the efficacy and 
cost–effectiveness of the new combination product. Innovation 
in the vaccine delivery field requires strategic alliances to mitigate 
project risks and to ensure complex and competing technology 
investment returns, making the new technology affordable in 
the context of the varying health economic factors and infectious 
diseases in different parts of the world. 
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Figure 2. Microneedle intradermal injection device. (A) Scanning electron micrograph of the stainless steel microneedle extending 
1.5 mm from the specially designed hub. (B) BD Soluvia™ device for intradermal delivery. (C) The intradermal injection technique using 
the BD Soluvia device. The needle is inserted perpendicularly to the skin surface so that the injection depth is controlled by the length of 
the microneedle rather than the user technique.
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Key issues

The skin is an attractive site for vaccination.•	

Clinical trials with numerous vaccines have shown that vaccines administered by intradermal delivery are safe and effective.•	

In several cases, benefits such as increased immune responses have been demonstrated for intradermal delivery compared with •	
traditional routes, such as subcutaneous or intramuscular.

Increased immune responses are particularly desirable in high-risk subject populations, such as the elderly, the immunocompromised •	
and cancer patients.

Intradermal delivery using standard needles and syringes is difficult to accomplish and requires extensive training.•	

New delivery systems for more accurate, reproducible and easier vaccine administration to the skin are currently being developed.•	

The future of vaccine delivery to the skin looks promising as new skin-delivery systems become available.•	
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