Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome)

Part II. Prognosis, management, and future directions

Sarah I. Jawed, BA, a Patricia L. Myskowski, MD, a Steven Horwitz, MD, b Alison Moskowitz, MD, b and Christiane Querfeld, MD, PhD d

New York, New York

CME INSTRUCTIONS

The following is a journal-based CME activity presented by the American Academy of Dermatology and is made up of four phases:

1. Reading of the CME Information (delineated below)
2. Reading of the Source Article
3. Achievement of a 70% or higher on the online Case-based Post Test
4. Completion of the Journal CME Evaluation

CME INFORMATION AND DISCLOSURES

Statement of Need:
The American Academy of Dermatology bases its CME activities on the Academy’s core curriculum, identified professional practice gaps, the educational needs which underlie these gaps, and emerging clinical research findings. Learners should reflect upon clinical and scientific information presented in the article and determine the need for further study.

Target Audience:
Dermatologists and others involved in the delivery of dermatoologic care.

Accreditation
The American Academy of Dermatology is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

AMA PRA Credit Designation
The American Academy of Dermatology designates this journal-based CME activity for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

AAD Recognized Credit
This journal-based CME activity is recognized by the American Academy of Dermatology for 1 AAD Credit and may be used toward the American Academy of Dermatology’s Continuing Medical Education Award.

Disclaimer:
The American Academy of Dermatology is not responsible for statements made by the author(s). Statements or opinions expressed in this activity reflect the views of the author(s) and do not reflect the official policy of the American Academy of Dermatology. The information provided in this CME activity is for continuing education purposes only and is not meant to substitute for the independent medical judgment of a healthcare provider relative to the diagnostic, management and treatment options of a specific patient’s medical condition.

Disclosures
Editors
The editors involved with this CME activity and all content validation/peer reviewers of this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Authors
Dr. Myskowski receives salary support as investigator from Janssen, Infinity, Allos, Millennium, and Kyowa Hakko/Amgen and was investigator for Eisai and Allos, Millenium, and Kyowa Hakko/Amgen. Dr. Horwitz is a consultant for Novartis, Studio 1.5, and Kyowa Hakko/Amgen and was an investigator for Allos, Millennium, and Kyowa Hakko/Amgen. Dr. Querfeld receives research support from Jazz Pharmaceuticals, Merck, and Amgen and has ownership interests in Isis Pharmaceuticals and Kyowa Hakko/Amgen. Dr. Moskowitz receives research support from Amgen and has ownership interests in Janssen and Allos.

Planners
The planners involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s). The editorial and education staff involved with this journal-based CME activity have reported no relevant financial relationships with commercial interest(s).

Resolution of Conflicts of Interest
In accordance with the ACCME Standards for Commercial Support of CME, the American Academy of Dermatology has implemented mechanisms, prior to the planning and implementation of this Journal-based CME activity, to identify and mitigate conflicts of interest for all individuals in a position to control the content of this Journal-based CME activity.

Learning Objectives
After completing this learning activity, participants should be able to identify topical and skin-directed therapy for patch, plaque, and tumor stage MF; demonstrate a fundamental understanding of systemic treatment options in tumor stage MF/erythrodermic MF and SS; and identify treatment options for alleviation of patient symptoms in advanced stage MF/SS.

Date of release: February 2014
Expiration date: February 2017
© 2013 by the American Academy of Dermatology, Inc.

Technical requirements:
American Academy of Dermatology
- Supported browsers: Firefox (5 and higher), Google Chrome (5 and higher), Internet Explorer (7 and higher), Safari (5 and higher), Opera (10 and higher)
- JavaScript needs to be enabled.

Elsevier:
- Technical Requirements
 - This website can be viewed on a PC or Mac. We recommend a minimum of:
 - PC: Windows NT, Windows 2000, Windows ME, or Windows XP
 - Mac: OS X
 - 128MB RAM
 - Processor speed of 500MHz or higher
 - 800x600 color monitor
 - Video or graphics card
 - Sound card and speakers

Provider Contact Information:
American Academy of Dermatology
Phone: Toll-free: (866) 505-SKIN (7546); International: (847) 240-1280
Fax: (847) 240-1859
Mail: P.O. Box 4034, Schaumburg, IL 60168

Confidentiality Statement:
American Academy of Dermatology: POLICY ON PRIVACY AND CONFIDENTIALITY

Privacy Policy - The American Academy of Dermatology (the Academy) is committed to maintaining the privacy of the personal information of visitors to its sites. Our policies are designed to disclose the information collected and how it will be used. This policy applies solely to the information provided while visiting this website: The terms of the privacy policy do not govern personal information furnished through any means other than this website (such as by telephone or mail).

E-mail Addresses and Other Personal Information - Personal information such as postal and e-mail address may be used internally for maintaining member records, marketing purposes, and alerting customers or members of additional services available. Phone numbers may also be used by the Academy when questions about products or services ordered arise. The Academy will not reveal any information about an individual user to third parties except to comply with applicable laws or valid legal processes.

Cookies - A cookie is a small file stored on the site user's computer or Web server and is used to aid Web navigation. Session cookies are temporary files created when a user signs in on the website or uses the personalized features (such as keeping track of items in the shopping cart). Session cookies are removed when a user logs off or when the browser is closed. Persistent cookies are permanent files and must be deleted manually. Tracking or other information collected from persistent cookies or any session cookie is used strictly for the user's efficient navigation of the site.

Links - This site may contain links to other sites. The Academy is not responsible for the privacy practices or the content of such websites.

Children - This website is not designed or intended to attract children under the age of 13. The Academy does not collect personal information from anyone it knows is under the age of 13.

Elsevier: http://www.elsevier.com/wps/find/privacyPolicy.cws_home/privacyPolicy
Both mycosis fungoides (MF) and Sézary syndrome (SS) have a chronic, relapsing course, with patients frequently undergoing multiple, consecutive therapies. Treatment is aimed at the clearance of skin disease, the minimization of recurrence, the prevention of disease progression, and the preservation of quality of life. Other important considerations are symptom severity, including pruritus and patient age/comorbidities. In general, for limited patch and plaque disease, patients have excellent prognosis on >1 topical formulations, including topical corticosteroids and nitrogen mustard, with widespread patch/plaque disease often requiring phototherapy. In refractory early stage MF, transformed MF, and folliculotropic MF, a combination of skin-directed therapy plus low-dose immunomodulators (eg, interferon or bexarotene) may be effective. Patients with advanced and erythrodermic MF/SS can have profound immunosuppression, with treatments targeting tumor cells aimed for immune reconstitution. Biologic agents or targeted therapies either alone or in combination—including immunomodulators and histone-deacetylase inhibitors—are tried first, with more immunosuppressive therapies, such as alemtuzumab or chemotherapy, being generally reserved for refractory or rapidly progressive disease or extensive lymph node and metastatic involvement. Recently, an increased understanding of the pathogenesis of MF and SS with identification of important molecular markers has led to the development of new targeted therapies that are currently being explored in clinical trials in advanced MF and SS. (J Am Acad Dermatol 2014;70:223.e1-17.)

Key words: cutaneous T-cell lymphoma; immunomodulators; mycosis fungoides; phototherapy; prognosis; Sézary syndrome; skin-directed treatment; staging; systemic treatment; targeted therapies; topical corticosteroids; topical nitrogen mustard; topical retinoids/rexinoids.

The treatment of mycosis fungoides (MF) and Sézary syndrome (SS) is primarily determined by disease extent and the impact on quality of life, prognostic factors (eg, folliculotropic MF and large cell transformation), and patient age/comorbidities. Early stage MF (stages IA-IIA), with disease primarily confined to the skin, has a favorable prognosis, with skin-directed therapies as first-line treatment. Prolonged complete remissions have been obtained, although disease cure is unclear.

Advanced stage MF/SS (stages IIB-IVB) is often treatment refractory and results in an unfavorable prognosis; treatment is aimed at reducing the tumor burden, delaying disease progression, and preserving quality of life. Current approaches include immunobiologic and targeted therapies, but the duration of clinical response is often short. Single/multiagent chemotherapy should be reserved for cases that are refractory to treatment. The revised guidelines by the International Society for Cutaneous Lymphomas (ISCL), the United States Cutaneous Lymphoma Consortium (USCLC), and the Cutaneous Lymphoma Task Force of the European Organization of Research and Treatment of Cancer (EORTC) include treatment options for MF/SS that match the National Comprehensive

From the Dermatology Service and the Lymphoma Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York.

Funding sources: None.

Conflicts of interest: None declared.

Abbreviations used:
- BSA: body surface area
- CR: complete response
- CRR: complete response rate
- CTCL: cutaneous T-cell lymphoma
- ECP: extracorporeal photopheresis
- EORTC: European Organization of Research and Treatment of Cancer
- HDACi: histone deacetylase inhibitor
- IFNα: interferon-alfa
- ISCL: International Society for Cutaneous Lymphoma
- MF: mycosis fungoides
- mSWAT: modified severity-weighted assessment tool
- NBUVB: narrowband ultraviolet B light
- NCCN: National Comprehensive Cancer Network
- NK: natural killer
- NM: nitrogen mustard
- NMSC: nonmelanoma skin cancer
- ORR: overall response rate
- PUVA: psoralen plus ultraviolet A light phototherapy
- RAR: retinoic acid receptor
- RXR: retinoid X receptor
- SS: Sézary syndrome
- TNMB: tumor, node, metastasis, blood
- TSEBT: total skin electron beam therapy
- USCLC: United States Cutaneous Lymphoma Consortium
- UVB: ultraviolet B light

Reprint requests: Christiane Querfeld, MD, PhD, Dermatology Service, Memorial Sloan-Kettering Cancer Center, 160 E 53rd St, New York, NY 10022. E-mail: querfelc@mskcc.org.

0190-9622/$36.00
Cancer Network (NCCN) guidelines for MF/SS in 2010. This review focuses on the staging, prognosis, and management of MF/SS, with an emphasis on the development of new treatment strategies. Of note, the response rate and duration data come from a range of studies with variable inclusion criteria, making it difficult to compare the efficacy of different treatments. Therefore, efforts have been made by the ISCL, USCLC, and EORTC to standardize both clinical end points and response criteria.

EVALUATION OF A PATIENT, STAGING, PROGNOSIS

Key points

- Patient evaluation requires a multidisciplinary team approach with dermatologists, oncologists, dermatopathologists, and radiation oncologists
- Staging of a patient requires an assessment of skin, lymph node, viscera, and blood involvement
- The prognosis of mycosis fungoides in most patients with limited patch/plaque disease is favorable and similar to that of an age-, sex-, and race-matched control population

Initial work-up

MF/SS patients should ideally be assessed by a multidisciplinary cutaneous T-cell lymphoma (CTCL) team of dermatologists and oncologists, with support from radiation oncologists, pathologists, and clinical psychologists. A routine evaluation includes a complete physical examination with a formal estimation of skin tumor burden using a modified severity-weighted assessment tool (mSWAT), measuring the total body surface area (BSA) by using the patient’s palm and fingers to represent 1% BSA. Patch, plaque, and tumor BSA are determined separately and multiplied by a factor (1, 2, and 4, respectively) to generate the standardized mSWAT score (Fig 1).

Diagnostic tests, including a complete blood cell count with differential, chemistry panel, lactate dehydrogenase, and a skin biopsy specimen for histology, immunophenotyping, and T cell receptor gene rearrangement studies should be performed at a CTCL referral center. Sézary cell count, circulating T cell subsets and clonality, positron emission tomography/computed tomography scans, and/or lymph node biopsy specimens should be obtained in cases suggestive of lymphadenopathy and/or systemic disease to establish staging, with HIV and human T-lymphotrophic virus type 1 serology testing in select patients.

Staging and prognosis

Accurate staging in MF/SS is essential to determine treatment and prognosis. MF/SS staging relies on the tumor, node, metastasis, blood (TNMB) classification proposed by the Mycosis Fungoides Cooperative Group and revised by the ISCL/EORTC, which considers the extent of skin involvement (T), presence of lymph node (N), visceral disease (M), and detection of Sézary cells in the peripheral blood (B); this information is translated into a clinical stage (Tables I and II).

Most MF patients (~70%) have early stage disease (stage IA-IIA) at the time of the initial diagnosis. The extent of cutaneous involvement (ranging from T1-T4) is significantly associated with a prognosis with decreased overall survival, and progression-free survival in advanced T-stage. One large study found that the risk for disease progression at 5 years was 10% in T1, 22% in T2, and 48% to 56% in T3 to T4 levels of cutaneous involvement. Patients with stage-IA MF have a similar life expectancy as age-, sex-, and race-matched control populations. Inferior survival has been shown in plaque over patch disease for both limited (T1) and extensive (T2) skin disease. Other prognostic factors include advanced age at diagnosis, elevated lactate dehydrogenase and beta-2-microglobulin levels, large cell transformation, and folliculotropic MF. A high Sézary cell count, the loss of T cell markers (eg, CD5 and CD7), and chromosomal abnormalities in circulating T cells are also independently associated with a poor outcome. The presence of a T cell clone in the peripheral blood in B0 patients (<5% Sézary cells) and identical clones in blood and skin portend a poorer prognosis.

SKIN-DIRECTED THERAPIES

Key points

- Topical corticosteroids are the most common treatment used in early mycosis fungoides and serve as an adjunct to other topical and systemic therapies at all stages
- Topical nitrogen mustard and phototherapy have similar efficacy in early stage mycosis fungoides with maintenance therapy needed for prolonged complete remissions
- Total skin electron beam therapy at a standard dose (30 Gy) is an effective treatment in refractory/relapsed extensive plaque and tumor mycosis fungoides associated with significant skin toxicity
- Low-dose local radiation therapy may be useful in selected lesions
Topical corticosteroids

Corticosteroids are frequently used in early MF and as adjunctive therapy in more advanced stages of the disease (Table III). Their multiple effects include induction of apoptosis, impact on lymphocyte adhesion to endothelium, and the downregulation of transcription factors (nuclear factor-κB and activator protein-1) with decreased cytokine, adhesion molecule, and growth factor production. Early studies found overall response rates (ORRs) between 80% and 90%17-20; a large prospective study of 79 patients with patch disease (stage T1/T2) on daily topical class I to III steroids (median observation time, 9 months) found that 32 (63%) of T1 patients and 7 (25%) of T2 patients achieved a complete response (CR).21 A sustained response was not seen after steroid discontinuation.21 Topical steroids also decrease erythema, scaling, and pruritus in erythrodermic CTCL.16 Side effects associated with long-term use include skin atrophy, hypopigmentation, striae, and potential systemic absorption. The latter was observed in 13% of patients in 1 study without adrenal suppressive effects.21

Topical nitrogen mustard (mechlorethamine hydrochloride)

Nitrogen mustard (NM) is an alkylating agent. Topical NM applications are commonly used for early stage MF. NM-induced DNA damage results in its systemic anticancer effects, but the topical formulation may work via immune mechanisms affecting keratinocyte–Langerhans cell–T cell interactions.22 Efficacy at concentrations of 0.01% to 0.02% in an aqueous solution or ointment base has been well reported, with a CR in up to 72% of early stage MF patients and occasional long-term remissions.
A recent multicenter trial of a 0.02% gel formulation resulted in similar efficacy that has led to the approval in 2013 by the US Food and Drug Administration for the treatment of stage IA/IB MF patients with previous skin-directed therapy. However, only 11% maintained a CR after 10 years. In 1 study on 203 stage I to III MF patients, CR rates (CRRs) of 76% to 80% in stage IA and 35% to 68% for stage IB patients were observed. Skin clearance may require 6 months and is usually followed by maintenance therapy, although there is no evidence that prolonged maintenance reduces recurrence.

Cutaneous side effects are common, including burning, pruritus, and irritant or allergic contact dermatitis, the latter being much more common in aqueous formulations; topical corticosteroids may be helpful. There is a small increased risk (1-5%) of developing nonmelanoma skin cancers (NMSCs), especially with concomitant radiation and psoralen plus ultraviolet A light phototherapy (PUVA).

Table I. Revisions to the tumor, node, metastasis, blood classification of mycosis fungoides/Sézary syndrome proposed by the International Society for Cutaneous Lymphomas and the European Organization of Research and Treatment of Cancer*

<table>
<thead>
<tr>
<th>TNMB stages</th>
<th>Stage description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin (T)</td>
<td>Stage description</td>
</tr>
<tr>
<td>T1</td>
<td>Limited patches, papules, and/or plaques (<10% BSA)</td>
</tr>
<tr>
<td>T1a</td>
<td>Patches only</td>
</tr>
<tr>
<td>T1b</td>
<td>Presence of plaques with or without patches</td>
</tr>
<tr>
<td>T2</td>
<td>Patches, papules, or plaques covering ≥ 10% BSA</td>
</tr>
<tr>
<td>T2a</td>
<td>Patch only</td>
</tr>
<tr>
<td>T2b</td>
<td>Presence of plaques with or without patches</td>
</tr>
<tr>
<td>T3</td>
<td>≥ 1 tumors (≥ 1 cm in diameter)</td>
</tr>
<tr>
<td>T4</td>
<td>Generalized erythroderma (≥ 80% BSA)</td>
</tr>
<tr>
<td>Node (N)</td>
<td>Stage description</td>
</tr>
<tr>
<td>N0</td>
<td>No clinically abnormal (palpable; ≥ 1.5 cm diameter) peripheral LNs</td>
</tr>
<tr>
<td>N1</td>
<td>Clinically abnormal LNs; histopathology Dutch grade 1 or NCI LN<sub>0</sub></td>
</tr>
<tr>
<td>N1a</td>
<td>Clone positive</td>
</tr>
<tr>
<td>N1b</td>
<td>Clone negative</td>
</tr>
<tr>
<td>N2</td>
<td>Clinically abnormal LNs; histopathology Dutch grade 2 or NCI LN<sub>3</sub></td>
</tr>
<tr>
<td>N2a</td>
<td>Clone negative</td>
</tr>
<tr>
<td>N2b</td>
<td>Clone positive</td>
</tr>
<tr>
<td>N3</td>
<td>Clinically abnormal LNs; histopathology Dutch grade 3-4 of NCI LN<sub>4</sub>; clone positive OR negative</td>
</tr>
<tr>
<td>Visceral (M)</td>
<td>Stage description</td>
</tr>
<tr>
<td>M0</td>
<td>No visceral organ involvement</td>
</tr>
<tr>
<td>M1</td>
<td>Visceral involvement (pathology confirmation of specific organ involved)</td>
</tr>
<tr>
<td>Blood (B)</td>
<td>Stage description</td>
</tr>
<tr>
<td>B0</td>
<td>Absence of significant blood involvement (≤ 5% of peripheral blood lymphocytes are atypical/Sézary cells)</td>
</tr>
<tr>
<td>B0a</td>
<td>Clone negative</td>
</tr>
<tr>
<td>B0b</td>
<td>Clone positive (same clone as in skin)</td>
</tr>
<tr>
<td>B1</td>
<td>Low blood tumor burden (>5% of peripheral blood lymphocytes are atypical/Sézary cells but does not meet criteria of B2)</td>
</tr>
<tr>
<td>B1a</td>
<td>Clone negative</td>
</tr>
<tr>
<td>B1b</td>
<td>Clone positive</td>
</tr>
<tr>
<td>B2</td>
<td>High blood tumor burden defined as one of the following: ≥ 1000 Sézary cells/μL with positive clonal rearrangement of TCR; CD4:CD8 ratio ≥ 10 with positive clone; or CD4<sup>+</sup>CD7<sup>+</sup> cells ≥ 40% or CD4<sup>+</sup>CD26<sup>+</sup> cells ≥ 30% with positive clone</td>
</tr>
</tbody>
</table>

*Adapted with permission from Olsen et al.5

BSA, Body surface area; LN, lymph node; NCI, National Cancer Institute; TCR, T-cell receptor; TNMB, tumor, node, metastasis, blood.

(>8 years). A recent multicenter trial of a 0.02% gel formulation resulted in similar efficacy that has led to the approval by the US Food and Drug Administration for the treatment of stage IA/IB MF patients with previous skin-directed therapy. However, only 11% maintained a CR after 10 years. In 1 study on 203 stage I to III MF patients, CR rates (CRRs) of 76% to 80% in stage IA and 35% to 68% for stage IB patients were observed. Skin clearance may require ≥ 6 months and is usually followed by maintenance therapy, although there is no evidence that prolonged maintenance reduces recurrence.

Cutaneous side effects are common, including burning, pruritus, and irritant or allergic contact dermatitis, the latter being much more common in aqueous formulations; topical corticosteroids may be helpful. There is a small increased risk (1-5%) of developing nonmelanoma skin cancers (NMSCs), especially with concomitant radiation and psoralen plus ultraviolet A light phototherapy (PUVA).

Topical retinoids

Bexarotene is a synthetic retinoid (rexinoid) with the oral form selectively binding retinoid X receptor (RXR) isoforms, affecting cell differentiation and inducing apoptosis. The mechanism of action of topical bexarotene 1% gel, which is approved by the US Food and Drug Administration for the treatment of early stage MF (up to 4 times daily), is less clear. Topical bexarotene is recommended twice daily; high rates of irritation are seen with 4 times/day application. Responses were seen in most patients (stage IA-IIA) after a median of 20 weeks of treatment (ORR, 63%; CR, 21%).

Tazarotene is a
topical retinoid that acts at the retinoic acid receptor (RAR). It was found to induce response in 58% of patients with limited (<20% skin involvement) or stable/refractory patch or plaque disease. Both topical bexarotene and 0.1% tazarotene gel cause local irritation.35

Phototherapy

PUVA has an established benefit in early stage MF and involves oral 8-methoxypsoralen, which sensitizes the skin to ultraviolet A light radiation (320-400 nm), inducing tumor cell apoptosis and DNA damage, suppressing keratinocyte cytokine production, and depleting Langerhans cells.36-38

The initial ultraviolet A light dosage is approximately 0.5 J/cm², increasing as tolerated, and given 3 times weekly until CR is achieved. Proper eye protection is needed for 12 to 24 hours after treatment sessions for cataract prevention. Maintenance therapy can be gradually reduced to once every 4 to 6 weeks to maintain remission. CR has been reported in up to 71.4% of patients with early stage MF, including long-term remissions of ≥10 years.39-46

PUVA is less effective in tumor stage/erythrodermic and folliculotropic MF; however, a combination with low-dose systemic agents (eg, interferon-alfa [IFNα]) may be considered.47-49 Common PUVA side effects include erythema, photodermatitis, pruritus, and nausea, managed with dose reduction/interruption.39-46

Ultraviolet B light (UVB) suppresses neoplastic T cell function and proliferation through antigen-presenting cell inhibition and increased keratinocyte cytokine production.50-52 Narrowband UVB (NBUVB; 311 nm) is used more frequently than PUVA in early stage MF because of its similar efficacy; there are also increased rates of skin cancer with PUVA. In stage IA/IB MF and parapsoriasis, CRR ranged from 54.2% to 91%,53-62 with a higher efficacy in patch compared to plaque disease.53 NBUVB is

Table II. Revisions to the staging of mycosis fungoides and Sézary syndrome based on International Society for Cutaneous Lymphomas and the European Organization of Research and Treatment of Cancer revisions to the tumor, node, metastasis, blood classification²⁵

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>IB</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>IIA</td>
<td>1 or 2</td>
<td>1 or 2</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>IIB</td>
<td>3</td>
<td>0-2</td>
<td>0</td>
<td>0 or 1</td>
</tr>
<tr>
<td>IIIA</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IIIIB</td>
<td>4</td>
<td>0-2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IVA₁</td>
<td>1-4</td>
<td>0-2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IVA₂</td>
<td>1-4</td>
<td>3</td>
<td>0</td>
<td>0-2</td>
</tr>
<tr>
<td>IVB</td>
<td>1-4</td>
<td>0-3</td>
<td>1</td>
<td>0-2</td>
</tr>
</tbody>
</table>

B, Blood; M, metastasis; N, node; T, tumor.

Table III. Summary of treatments for patients with mycosis fungoides and Sézary syndrome

<table>
<thead>
<tr>
<th>Therapy type</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage MF (stage IA-IIA)</td>
<td>Steroids</td>
</tr>
<tr>
<td>Topical/skin-directed therapy</td>
<td>Phototherapy</td>
</tr>
<tr>
<td></td>
<td>Nitrogen mustard</td>
</tr>
<tr>
<td></td>
<td>Bexarotene</td>
</tr>
<tr>
<td></td>
<td>Local radiation</td>
</tr>
<tr>
<td></td>
<td>TSEBT</td>
</tr>
<tr>
<td>Refractory early stage MF (stage IA-IIA)</td>
<td>PUVA or NBUVB and IFNα (low-dose)</td>
</tr>
<tr>
<td>Combination therapy</td>
<td>PUVA or NBUVB and bexarotene (low-dose)</td>
</tr>
<tr>
<td>Advanced MF/SS (stage IIB-IVB)</td>
<td>Skin-directed therapy</td>
</tr>
<tr>
<td></td>
<td>TSEBT</td>
</tr>
<tr>
<td>Immunomodulators</td>
<td>Interferons (IFNα and IFNγ)</td>
</tr>
<tr>
<td></td>
<td>Retinoid/rexinoid (bexarotene)</td>
</tr>
<tr>
<td></td>
<td>ECP</td>
</tr>
<tr>
<td>Biologic/targeted therapies</td>
<td>Alemtuzumab</td>
</tr>
<tr>
<td>Combined therapy</td>
<td>HDACis (eg, romidepsin and vorinostat)</td>
</tr>
<tr>
<td></td>
<td>Antifolates (eg, methotrexate and pralatrexate)</td>
</tr>
<tr>
<td>Systemic chemotherapy</td>
<td>IFNα and phototherapy</td>
</tr>
<tr>
<td></td>
<td>IFNα and retinoids/rexinoids</td>
</tr>
<tr>
<td></td>
<td>Retinoid and phototherapy</td>
</tr>
<tr>
<td></td>
<td>ECP and IFNα</td>
</tr>
<tr>
<td></td>
<td>ECP and retinoids/rexinoids</td>
</tr>
<tr>
<td>Single-agent</td>
<td>Pegylated doxorubicin</td>
</tr>
<tr>
<td>Multiagent</td>
<td>Purine/pyrimidine analogues (eg, gemcitabine)</td>
</tr>
<tr>
<td>Stem cell transplant</td>
<td>CHOP and CHOP-like</td>
</tr>
<tr>
<td></td>
<td>Autologous</td>
</tr>
<tr>
<td></td>
<td>Allogeneic</td>
</tr>
<tr>
<td></td>
<td>Nonmyeloablative allogeneic</td>
</tr>
</tbody>
</table>

Continued
Toll-like receptor; TSEBT plus ultraviolet A light phototherapy; SS light phototherapy
IFN deactetylase inhibitors; MF gamma;
than both NM and phototherapy.68,69 With the entire surface of the skin, with deeper penetration involves the administration of ionizing radiation to the
Radiation especially useful in hypopigmented MF. 63 UVB is
although less than with PUVA.64-66 Low-dose bexarotene (75-150 mg) may be combined with lower cumulative NBUVB to achieve a CR.67
especially useful in hypopigmented MF.53 UVB is generally well tolerated, with acute side effects of pruritus, burning, and erythema resolving with or without dose reductions. Photoaging and photocarcinogenesis are long-term risks of NBUVB, although less than with PUVA.64-66 Lower responses are common in CTCL with variable response durations (range, 1-25 months).85-86 Lower responses are common in transformed MF and lower extremity lesions associated with poor circulation and wound healing. Radiosensitizing agents, such as histone deacetylase inhibitors, may work synergistically with low-dose local radiation therapy.57,68

SYSTEMIC THERAPIES

Key points
- Single-agent systemic therapy (eg, bexarotene) is often used after skin-directed therapy is inadequate or in cases of advanced disease
- Immunomodulators, such as interferons and retinoids, are commonly used as first-line monotherapy in advanced mycosis fungoides and are also used in low-dose combination with topical agents
- Histone deacetylase inhibitors (vorinostat or romidepsin) are also effective single agents in skin, nodal, and blood disease
- Alemtuzumab is particularly active in erythrodermic mycosis fungoides/Sézary syndrome, with depletion of the central memory T-cell subset
- Chemotherapy is generally reserved for treatment refractory or rapidly progressive advanced mycosis fungoides
- Allogeneic stem cell transplantation, also reserved for advanced disease, may have curative potential in mycosis fungoides

TSEBT toxicity is dose-dependent and includes erythema, xerosis, and desquamation, with long-term effects of alopecia, nail loss/dystrophy, xerosis, anhidrosis, and skin atrophy/necrosis.70,81,82 Low-dose radiation (10 Gy) may significantly decrease side effects and enable repeat radiation for disease control/palliation,81 although lower CRRs and response durations are seen with reduced doses (at 5-10 Gy, 16%; 10-20 Gy, 35%; 20-30 Gy, 34%; and >30 Gy, 62%).81

Local radiation therapy is effective for isolated/localized cutaneous tumors, or chronic, painful/ulcerated lesions, with a CRR of >90%.83-85 Multifractionated doses are standard, but single/few fractions of low-dose radiation may be sufficient: a single or 2 fractions of 7 to 8 Gy provides a CR in 95% of lesions.85,86 Lower responses are common in transformed MF and lower extremity lesions associated with poor circulation and wound healing. Radiosensitizing agents, such as histone deacetylase inhibitors, may work synergistically with low-dose local radiation therapy.57,68

Table III. Cont’d

<table>
<thead>
<tr>
<th>Therapy type</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investigational therapy</td>
<td>Lenalidomide, doxorubicin, vincristine, and prednisone; ECP, extracorporeal photopheresis; HDACi, histone deacetylase inhibitors; IFNα, interferon-alfa; IFNγ, interferon-gamma; MF, mycosis fungoides; NBUVB, narrowband ultraviolet B light phototherapy PD-1, Programmed-Death-1; PUVA, psoralen plus ultraviolet A light phototherapy; SS, Sézary syndrome; TLR, Toll-like receptor; TSEBT, total skin electron beam therapy.</td>
</tr>
</tbody>
</table>

Radiation

Total skin electron beam therapy (TSEBT) involves the administration of ionizing radiation to the entire surface of the skin, with deeper penetration than both NM and phototherapy.58,69 With the advent of effective systemic therapies, TSEBT is reserved for rapidly progressive, refractory/relapsed, and extensive plaque (T2) or tumor (T3) disease. TSEBT decreases the burden of circulating malignant T cells that pass through the dermal vasculature and are highly radiosensitive; however, there are conflicting reports of its effectiveness in erythrodermic MF with blood involvement.70-72

Conventional TSEBT (30-36 Gy ionizing radiation over 8-10 weeks) may induce a CR,72-76 leading to 75% and 47% CRRs in T2 and T3 MF, respectively.75 The duration of the response is limited (a median of 29 and 9 months for T2 and T3 disease, respectively, with a median follow-up time of 77 months).75 Potential skin toxicity/necrosis limits repeat radiation courses. Subsequent skin-directed/systemic agents (eg, NM, PUVA, oral retinoids, IFNa, and extracorporeal photopheresis [ECP]) have shown mixed results.70-83 A second TSEBT course at a lower dose may be considered in select populations, depending upon the initial dose, tolerance, and the amount of time that has passed since the administration of the first course.75
months). Oral bexarotene, which was been approved by the US Food and Drug Administration for refractory CTCL in all stages, has effects on cell differentiation and apoptosis and also downregulates CCR4 and E-selectin expression, affecting malignant T-cell trafficking to the skin.

In phase II and III trials of 94 patients with advanced stage MF (stages III-IVB) refractory to ≥ 2 standard therapies, ORRs of 45% and 55% were observed with daily doses of 300 or 650 mg/m², respectively. Decreased skin erythema/scaling and pruritus with temporary blood improvement was seen in erythrodermic MF and SS. The median response duration was 7 to 9 months. A daily dose regimen of 300 mg/m² was recommended based on the safety profile. Bexarotene has been safely combined at lower doses with IFNα, ECP, radiation, and phototherapy in treatment refractory or advanced disease but has not been shown to be better than bexarotene monotherapy.

The most common side effects include hypertriglyceridemia, hypercholesterolemia, and central hypothyroidism, requiring dose adjustments, lipid-lowering, and thyroid medications. Other side effects include skin peeling, headache, arthralgias/myalgias, neutropenia/leukopenia, pancreatitis, and hepatitis.

Interferons

IFNs have shown a wide range of biologic effects, and IFNα enhances T₄₁ cell—mediated responses to malignant T-lymphocytes. IFNα is generally administered long-term, although the optimal dose and duration in MF/SS have not been established. Therapy should start at low doses (ie, 1-3 million units [MUs] 3 times weekly with gradual escalation of doses). ECP involves separating circulating mononuclear cells using a leukapheresis-based method, mixing with 8-methoxypsoralen, exposure to ultraviolet A light (1-2 J/cm²), and reinfusion into the patient, with the subsequent release of tumor antigens, leading to a systemic antitumor response. ECP was approved by the US Food and Drug Administration for the palliative treatment of CTCL in 1988 and is empirically given on 2 consecutive days every 2 to 4 weeks over 6 months.

ECP is primarily effective in erythrodermic CTCL, with 1 multicenter study of 37 patients showing a 73% ORR, including 24 patients with erythrodermic MF/SS. Later studies yielded a 35% to 71% ORR and a 14% to 26% CRR. Parameters associated with favorable response include short disease duration, clinical improvement in <6 months, normal CD8⁺ T cell count and CD4:CD8 ratio, low percentage of Sézary cells, and the absence of extracutaneous disease. Bexarotene or IFNα may be added for synergy. ECP may also be beneficial in a subset of limited disease (stage T1/T2) with abnormal flow cytometry (stage B1/B2). The few adverse events of ECP include catheter-related infection, hypotension caused by volume shifts, headache, fever, chills, and nausea secondary to 8-methoxypsoralen.

Targeted therapies

Alemtuzumab. Alemtuzumab is a humanized monoclonal antibody against the CD52 surface antigen on immune cells, including T/B cells, resulting in their depletion from the blood via neutrophil-mediated, antibody dependent cellular cytotoxicity and complement activation. CD52 expression is greater on CD4⁺ than CD8⁺ T cells. Alemtuzumab was initially approved by the US Food and Drug Administration for the treatment of chronic lymphocytic leukemia, but is often effective in erythrodermic MF/SS, with ORRs of 86% to 100% (because of its depletion of central memory T cells that predominate in SS). Original studies recommended subcutaneous/intravenous doses of 30 mg 3 times weekly, but lower doses (10 mg 3 times/week) may be equally efficacious.

Neutralizing antibodies may decrease IFN efficacy, are dose-related, and occur less frequently with combination therapies. Most common side effects are also dose-related, including headaches, flu-like symptoms, fatigue, anorexia, weight loss, depression, peripheral neuropathy, and dysgeusia.

Extracorporeal photopheresis

ECP involves separating circulating mononuclear cells using a leukapheresis-based method, mixing with 8-methoxypsoralen, exposure to ultraviolet A light (1-2 J/cm²), and reinfusion into the patient, with the subsequent release of tumor antigens, leading to a systemic antitumor response. ECP was approved by the US Food and Drug Administration for the palliative treatment of CTCL in 1988 and is empirically given on 2 consecutive days every 2 to 4 weeks over 6 months.
Alemtuzumab is associated with infusion reactions and prolonged immunosuppression, with earlier studies reporting opportunistic infections (eg, cytomegalovirus reactivation). Recent infectious prophylaxis has likely decreased this risk.141-143

Histone deacetylase inhibitors

Histone deacetylase inhibitors (HDACis) may restore the expression of tumor suppressor and/or cell cycle regulatory genes by increasing histone acetylation with resultant growth inhibition and apoptosis. Vorinostat—approved by the US Food and Drug Administration for CTCL that has progressed beyond stage IB that is also refractory to 2 systemic therapies—is an oral HDAC class I and II inhibitor that also inactivates STAT3, which is constitutively expressed in CTCL, and enhances retinoid effects of RAR/RXR activation and gene transcription in vitro.145,146 A phase II trial showed a partial response in 22 of 74 patients (29.7%) with only 1 CR.147 All patients received 400 mg of vorinostat once daily, with reductions to 300 mg daily for toxicity. Another phase II trial of 33 heavily pretreated CTCL patients found that sustained 400-mg daily dosing is more effective and less toxic than intermittent dosing (twice-daily 300-mg regimens).148 A similar ORR of 24.2% was noted.

Romidepsin, which is approved by the US Food and Drug Administration for advanced CTCL that is refractory to ≥1 systemic therapy, inhibits class I and II HDACs and is intravenously administered at a weekly dose of 14 mg/m² for 3 weeks, 1 week off, and continued until intolerance or disease progression. Two phase II trials have evaluated romidepsin in advanced-stage MF, with 1 showing a 36% response rate (26/72), including 5 patients with CR.149,150 Significant pruritus reduction was reported in patients; however, this did not correlate with clinical response.151 The most common side effects were gastrointestinal disturbances (ie, nausea and anorexia), fatigue, hematologic abnormalities (ie, thrombocytopenia, anemia, lymphopenia, and neutropenia), and infectious complications.149,150,152 Electrocardiography assessments showed T wave flattening in 71% of patients, less common ST depression, and rare QTc prolongations (2%).149,150 A new oral pan-deacetylase (class I-IV) inhibitor panobinostat, which has a longer half-life, is currently being studied.153

Denileukin diftitox. The IL-2-alfa receptor or CD25 is a target for denileukin diftitox, a fusion toxin (IL-2 linked with diphtheria toxin) that was approved by the US Food and Drug Administration in 1999 for recurrent/persistent CTCL with ≥20% expression of CD25 on malignant T cells, but it is currently unavailable by manufacturer.154 After interleukin-2 receptor binding, denileukin diftitox is internalized, inducing apoptosis by blocking protein synthesis.155,156 Phase III studies found RRs of 23% and 38% at low dose (9 mg/kg/day) and 36% and 49% at 18 mg/kg/day, respectively (median duration, 7 months).157-159 Response may be seen in patients with <20% CD25 expression.156 Adverse effects include acute infusion-related events (eg, fever, rash, chills, dyspnea, or hypotension), myalgias, elevated serum transaminase levels, and vascular leak syndrome.156,159

CHEMOTHERAPY

Antifolates

The reduced folate carrier type 1, an oncofeto-protein that is predominantly expressed in the membranes of fetal and tumor cells, mediates the cellular uptake of folates and antifolate drugs, including methotrexate and a newer agent, pralatrexate (which is approved by the US Food and Drug Administration for relapsed/refractory peripheral T-cell lymphoma).161,162 Both antifolates are substrates for folylpolyglutamate synthetase and potently inhibit dihydrofolate reductase.163 Low-dose methotrexate (median weekly dose, 25 mg) has an ORR of 33% and 58% in plaque (T2) MF and erythodermic MF, respectively, with an increased ORR (82%) at higher doses (60-240 mg/m² intravenously).164,165 In a study on relapsed/refractory CTCL, an optimal intravenous dose of pralatrexate of 15 mg/m² weekly for 3 to 4 weeks was identified with an ORR of 45%, including patients previously treated with methotrexate.166 Common side effects include gastrointestinal (eg, nausea/vomiting, mucositis, and ulcers), hematologic (eg, leukopenia, anemia, and thrombocytopenia), and hepatic toxicities.167,168

Single and multiagent chemotherapy. Both single and multiagent chemotherapy have been used in refractory/refractory CTCL. Gemcitabine and pegylated liposomal doxorubicin are relatively new effective monotherapies with ORRs of 68% and 75% for gemcitabine169,170 and 40.8% and 88% for doxorubicin.171,172 Multiagent chemotherapy regimens including cyclophosphamide, doxorubicin, vincristine, and prednisone—based regimens have shown comparable efficacy, but with greater toxicity.1

Hematopoietic stem cell transplantation. Hematopoietic stem cell transplantation—specifically allogeneic stem cell transplantation—may have a curative potential in advanced MF/SS, although no large series exist and conditioning regimens are largely driven by institutional preference.173-177 Despite reported CRs in most patients treated with autologous stem cell transplantation, relapses are frequent, occurring within 6 months posttransplant.176-180 Allogeneic transplants achieve
more durable CRRs, which are largely attributed to the donor T/natural killer (NK) cell—mediated graft versus lymphoma effect. Donor lymphocyte infusions in the early posttransplant period or in relapsed disease may enhance this effect.183,184 Response durations of 6 years posttransplant have been reported.183,184 Treatment-related mortality (ie, life-threatening infections and graft versus host disease) occurs in approximately 30\% of cases. Reduced-intensity nonmyeloablative (mini) allogeneic stem cell transplantation potentially offers a graft versus lymphoma effect with decreased conditioning regimen—related toxicity.183,185-187

Other investigational therapies

Lenalidomide, a thalidomide analog that has been approved by the US Food and Drug Administration for the treatment of myelodysplastic syndrome and relapsed/refractory multiple myeloma and mantle cell lymphoma, increases T\textsubscript{H}1-cytokine production and enhances T and NK cell—mediated killing.189 A phase II trial of 32 patients with advanced/refractory CTCL showed an ORR of 29\%.189 Side effects include temporary flares of skin disease and circulating Sézary cells, cytopenias, and fatigue/malaise.

Toll-like receptor agonists, which mimic bacterial antigens and stimulate the innate immune response, have been used in CTCL patients.190,191 as have interleukins-12 and -2.192-195 In 2 phase II studies of zanolimumab, a monoclonal antibody with specificity for CD4 receptors on T cells, a 56\% ORR at 560 to 980 mg was observed, with early (8-week) durable response, and side effects similar to other T cell—targeted therapies.196 T-cell receptor CCR\textsubscript{4}, which is involved in the skin-homing of malignant T cells, is another potential therapeutic target in CTCL.197-201

Proteasomes function in nonlysosomal degradation of intracellular proteins, regulating cell survival; bortezomib, a proteasome inhibitor, which also downregulates the transcription factor nuclear factor-\textalphaB, has shown efficacy in relapsed/refractory CTCL (67\% ORR) with side effects of myelosuppression and sensory neuropathy.202,203 Other targeted therapies currently in clinical trials include antibody-drug conjugate directed to CD30 surface protein (brentuximab-vedotin), anti—PD-1 therapies, phosphoinositide 3-kinase inhibitors, and protein kinase C inhibitors.204-209

GENERAL HEALTH CARE

Key points

- Important quality of life considerations include pruritus, xerosis, and the prevention of skin infections

- Treatment-related toxicities may require dose adjustments, particularly in the elderly, patients with advanced disease, and patients with multiple comorbidities

Many patients are disabled by their pruritus and skin appearance. Emollients should be used for dryness and scaling, and the application of midpotency steroids, particularly triamcinolone 0.1\% ointment once or twice daily, is especially useful in SS. A short-term course with systemic steroids often gives immediate symptomatic relief. Oral antihistamines, gabapentin, aprepitant, and/or mitzamazine may be of benefit for pruritus. Patients with more widespread cutaneous disease or generalized erythroderma need screening for secondary infections (eg, staphylococcus, streptococcus, dermatophytes, and herpesviruses) and appropriate systemic treatment. Bleach baths, as given in children with severe atopic dermatitis, can minimize colonization of Staphylococcus aureus.210 Patients with advanced disease are particularly at increased risk for infections and sepsis given their immunosuppressed state.

In summary, while there is no cure for MF and SS, treatment is directed at clearing cutaneous and extracutaneous disease, minimizing disease recurrence, and preventing disease progression. Treatment-associated toxicities can be problematic, particularly in elderly patients. Dose adjustments are often required in those patients, because treatment is palliative and must be balanced against the increased risk for toxicities.

REFERENCES

65. Quiros PA, Jones GW, Kacinski BM, Braverman IM, Heald PW, Edelson RL, et al. Total skin electron beam therapy followed...

223.e14 jawed et al

IMPORTANT NOTICE REGARDING JAAD GRAND ROUNDS

As we are no longer able to offer CME credit for JAAD Grand Rounds, that feature will be discontinued when our current inventory of cases runs out. New manuscripts are no longer being accepted for that section. A similar selection of great cases can be found online in the Case Letters section of each month’s edition of JAAD that can be accessed at http://www.jaad.org.