Inicio / De Interés / Artículos Científicos / Automatic detection of blue-white veil and related structures in dermoscopy images

Automatic detection of blue-white veil and related structures in dermoscopy images

Computerized Medical Imaging and Graphics
Volume 32, Issue 8, December 2008, Pages 670-677

M. EmreCelebiHitoshiIyatomiWilliam V.StoeckerRandy H.MossHarold, S.RabinovitzGiuseppeArgenziano, H. PeterSoyer

Abstract

Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white “ground-glass” film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition.

Acerca de PIEL-L

Mesa de redacción de Piel Latinoamericana. Donde recibimos casos, aportes e información de interés para la comunidad latinoamericana dermatólogica

Deja un comentario

Para casos clínicos, sólo se publicarán comentarios de Suscriptores Especialistas de Salud registrados en nuestra base de datos.

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

 

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información.plugin cookies

ACEPTAR
Aviso de cookies